Search results

Search for "microwave photons" in Full Text gives 3 result(s) in Beilstein Journal of Nanotechnology.

Approaching microwave photon sensitivity with Al Josephson junctions

  • Andrey L. Pankratov,
  • Anna V. Gordeeva,
  • Leonid S. Revin,
  • Dmitry A. Ladeynov,
  • Anton A. Yablokov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 582–589, doi:10.3762/bjnano.13.50

Graphical Abstract
  • of three and more photons, with a dark count time above 0.01 s. Keywords: Josephson junction; microwave photons; single photon counter; thermal activation; Introduction The development of a single photon counter (SPC) for microwave frequencies of tens of gigahertz has been required for several
PDF
Album
Full Research Paper
Published 04 Jul 2022

Microwave photon detection by an Al Josephson junction

  • Leonid S. Revin,
  • Andrey L. Pankratov,
  • Anna V. Gordeeva,
  • Anton A. Yablokov,
  • Igor V. Rakut,
  • Victor O. Zbrozhek and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2020, 11, 960–965, doi:10.3762/bjnano.11.80

Graphical Abstract
  • value calculated from the gap, is experimentally investigated for application as a threshold detector for microwave photons. We present the preliminary results of measurements of the lifetime of the superconducting state and the probability of switching by a 9 GHz external signal. We found an
  • junction coupled with a resonator directly depend on the number of microwave photons in the resonator. The main disadvantages of this approach are the long initialization and freezing times of the detector. The detector works by slowly increasing the bias current from zero. This ramp takes seconds to avoid
PDF
Album
Full Research Paper
Published 23 Jun 2020

A terahertz-vibration to terahertz-radiation converter based on gold nanoobjects: a feasibility study

  • Kamil Moldosanov and
  • Andrei Postnikov

Beilstein J. Nanotechnol. 2016, 7, 983–989, doi:10.3762/bjnano.7.90

Graphical Abstract
  • the theoretical prerequisites for the effect within the quasiparticle approach. Results and Discussion The microwave photons are considered to be quasiparticles with the dispersion law Eph = c·pph (c is the speed of light); the longitudinal phonons would be quasiparticles with the dispersion law Evm
  • chamber, where the GNBs are exposed to both direct irradiation from the magnetron and to that reflected from the chamber walls. Effectively, the microwave photons could be absorbed anyway inside the GNBs, where consequently the THz photons will be emitted. The resulting THz radiation is channeled out of
PDF
Album
Full Research Paper
Published 06 Jul 2016
Other Beilstein-Institut Open Science Activities